

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 175 (2003) 341-347

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Analysis of the spin exchange interactions of ferromagnetic CdVO₃ in terms of first principles and qualitative electronic structure calculations

D. Dai, H.-J. Koo, and M.-H. Whangbo*

Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA Received 6 February 2003; received in revised form 10 May 2003; accepted 20 May 2003

Abstract

First principles spin-polarized electronic band structure calculations were carried out for three ordered spin states of CdVO₃, and the strengths of its corner- and edge-sharing spin exchange interactions were estimated. To gain insight into why CdVO₃ exhibits ferromagnetism while CaV_2O_5 does not despite their apparent structural similarity, the spin exchange interactions of CdVO₃ and CaV_2O_5 were compared in terms of spin dimer analysis using extended Hückel tight binding calculations, and the local geometries of their V⁴⁺ ions were examined.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

The CdVO₃ phase had been known for some time [1–3] before its precise crystal structure and magnetic properties were determined a few years ago [4]. The magnetic susceptibility data of CdVO₃ collected from 77 to 297 K were found to exhibit a Curie-Weiss behavior with a positive Weiss temperature hence hinting the presence of ferromagnetism [3]. That CdVO₃ is indeed ferromagnetic was proven unambiguously by the magnetization and electron paramagnetic resonance studies of Onoda and Nishiguchi [4]. CdVO3 consists of isolated VO₃ chains made up of corner- and edge-sharing VO₅ square pyramids (Figs. 1a and b). The V^{4+} (d^1) ions of each VO₃ chain form a zigzag chain (Fig. 1c), and adiacent \mathbf{V}^{4+} ions interact through corner-sharing (J_c) and edge-sharing (J_e) exchange paths. It was found [4] that the magnetic susceptibility of CdVO₃ above 50 K is well described by the spin-1/2 ferromagnetic Heisenberg model [5] with one exchange parameter J = 8.6 meV. This finding, together with the qualitative observation [6] that an edge-sharing spin exchange between first-row metal ions can be ferromagnetic when the direct overlap between their 3d orbitals is weak, led Onoda and Nishiguchi to suggest that J_e is ferromagnetic and J_c is significantly weaker in strength than $J_{\rm e}$ [4].

0022-4596/03/\$ - see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0022-4596(03)00307-4

The occurrence of ferromagnetism in CdVO₃ is quite intriguing because it is typically antiferromagnetism that is found in magnetic oxides made up of VO₅ square pyramids containing V^{4+} ions. Representative examples include AV_2O_5 (A = Ca, Mg) [7–12] and AV_4O_9 ($Cs_2, Ca,$ Sr, H₂N(CH₂CH₂)₂NH₂) [12–18]. In particular, the VO₅ square pyramid and the zigzag V⁴⁺ chain unit of CdVO₃ are very similar in structure to those of CaV₂O₅. The V₂O₅ layers of CaV₂O₅ are made up of corner-sharing VO_3 chains such that the V⁴⁺ ions between adjacent VO₃ chains interact through corner-sharing exchange paths J'_{c} (Fig. 1d). In the present work, we estimate quantitatively the spin exchange parameters $J_{\rm e}$ and $J_{\rm c}$ of CdVO₃ using first principles spin-polarized electronic band structure calculations. Then we probe why ferromagnetic interactions dominate in CdVO3 but antiferromagnetic interactions do in CaV₂O₅ by analyzing the edge- and corner-sharing spin exchange interactions of CdVO₃ and CaV₂O₅ on the basis of tight binding electronic structure calculations and then comparing the local geometries of their V^{4+} ions.

2. Mapping analysis of spin exchange interactions

Spin exchange parameters of an extended magnetic solid can be quantitatively determined on the basis of first principles electronic structure calculations using the

^{*}Corresponding author. Fax: +919-515-7832.

E-mail address: mike_whangbo@ncsu.edu (M.-H. Whangbo).

Fig. 1. (a) Representations of VO₅ square pyramids with the apical oxygen atom lying above and below the O₄ basal plane. (b) Schematic projection view of a VO₃ chain of CdVO₃. (c) Arrangement of the V⁴⁺ ions (represented by dots) in a VO₃ chain of CdVO₃. (d) Arrangement of the V⁴⁺ ions (represented by dots) in a V₂O₅ layer of CaV₂O₅.

"mapping" [19–21] or "direct" method [11, 22]. In the mapping method, the energies of several electronic states of a magnetic solid (or its fragments) are determined by electronic structure calculations, and then the energy differences between these electronic states are mapped onto those between the corresponding spin states determined by an appropriate spin Hamiltonian. In the direct method, spin exchange parameters of a magnetic solid are directly calculated from its ground state electronic structure on the basis of electronic band structure calculations.

In the cluster approach to the mapping analysis [19], one defines the spin dimer for each exchange path as the structural fragment containing the two interacting spin sites. Then the energies of two different electronic states of the spin dimer are determined by first principles electronic structure calculations, and the corresponding spin states are generated by employing either a Heisenberg or an Ising Hamiltonian depending upon the nature of electronic structure calculations employed [20]. In the noncluster approach to the mapping analysis [21], the electronic energies of a magnetic solid are determined for a number of states with ordered spin arrangements on the basis of spin-polarized electronic band structure calculations, and the corresponding spin states are generated in terms of an Ising Hamiltonian. In the present work, this latter method was employed to evaluate the J_c and J_e values of CdVO₃.

To determine the two spin exchange parameters J_c and J_e of CdVO₃ (Fig. 1d), we consider the three ordered spin states $|HS\rangle$, $|BS_1\rangle$, and $|BS_2\rangle$, depicted in Fig. 2. In general, the Ising Hamiltonian for an extended solid is written as

$$\hat{H}^{\text{Ising}} = -\sum_{ij} J_{ij} \hat{S}_{iz} \hat{S}_{jz}.$$
 (1)

Thus, for an isolated zigzag chain of $CdVO_3$, the energies of the three spin states per formula unit (FU) (i.e., per spin site) are written as

$$E(\mathrm{HS}) = \langle \mathrm{HS} | \hat{H}^{\mathrm{Ising}} | \mathrm{HS} \rangle = -\frac{1}{4} J_{\mathrm{e}} - \frac{1}{4} J_{\mathrm{c}}, \qquad (2a)$$

$$E(\mathbf{BS}_1) = \langle \mathbf{BS}_1 | \hat{H}^{\text{Ising}} | \mathbf{BS}_1 \rangle = \frac{1}{4} J_e - \frac{1}{4} J_c, \qquad (2b)$$

$$E(\mathbf{BS}_2) = \langle \mathbf{BS}_2 | \hat{H}^{\text{Ising}} | \mathbf{BS}_2 \rangle = \frac{1}{4} J_c.$$
(2c)

Consequently, the spin exchange parameter J_e is related to the state energy difference as

$$J_{\rm e} = 2[E({\rm BS}_1) - E(HS)].$$
(3a)

Then, the spin exchange parameter J_c is obtained either as

$$J_{\rm c} = \frac{1}{2} J_{\rm e} - 2[E(BS_1) - E(BS_2)]$$
(3b)

or as

$$J_{\rm c} = \frac{1}{2}J_{\rm e} + 2[E({\rm BS}_2) - E({\rm HS})].$$
 (3c)

Therefore, the J_c and J_e values are determined when the energies (per FU) of the electronic states corresponding to the spin states $|HS\rangle$, $|BS_1\rangle$ and $|BS_2\rangle$, are obtained by first principles electronic band structure calculations.

3. First principles electronic structure calculations and spin exchange parameters

To determine the electronic energies of the three ordered spin states, $|\text{HS}\rangle$, $|\text{BS}_1\rangle$ and $|\text{BS}_2\rangle$, we carried out spin-polarized first principles full potential linearized plane wave (FP-LAPW) calculations using the WIEN2k program package [23] with the generalized gradient approximation [24] for the exchange-correlation energy. Both ferromagnetic and anti-ferromagnetic calculations were performed with the (*a*, 2*b*, *c*) supercell. We employed the muffin-tin radii of 2.57 au for Cd, 1.59 au for V, and 1.56 au for O. The basis set cut-off parameters were $G_{\text{max}} = 14$ and $R_{\text{mt}}K_{\text{max}} = 7$. Integrations over the irreducible wedge of the Brillouin zone were performed using a 40 k-point regular mesh. Results of our calculations are summarized in Tables 1, 2 and Figs. 3–5.

The present FP-LAPW calculations show that the $|HS\rangle$ state of CdVO₃ is more stable than the

Fig. 2. Three ordered spin arrangements in an isolated VO₃ chain of CdVO₃. (a) Ferromagnetic arrangement $|\text{HS}\rangle$. (b) Antiferromagnetic arrangement $|\text{BS}_1\rangle$. (c) Antiferromagnetic arrangement $|\text{BS}_2\rangle$. Here the labels "HS" and "BS" refer to "highest-spin" and "broken-symmetry", respectively.

Table 1 Electronic energies E (Ryd/FU) and relative energies ΔE (meV/FU) of the |HS \rangle , |BS₁ \rangle and |BS₂ \rangle states of CdVO₃ obtained by FP-LAPW calculations

State	E (Ryd/FU)	$\Delta E \; ({ m meV/FU})^3$		
HS>	-13542.465395	0.0		
$ BS_1\rangle$	-13542.464486	12.4		
$ \text{BS}_2\rangle$	-13542.464657	10.0		

 $^{a}\, The \, |HS\rangle$ state was taken as the reference.

Table 2

Magnetic moments on V ($\mu_B/FU)$ in the $|HS\rangle,|BS_1\rangle$ and $|BS_2\rangle$ states of CdVO₃ obtained by FP-LAPW calculations^a

	HS>	$ \mathrm{BS}_1 angle$		$ \text{BS}_2 angle$		
	V	V1	V2	V1	V2	
Total	0.75	0.71	-0.71	0.72	-0.72	
d_{xv}	0.62	0.62	0.05	0.63	0.05	
$d_{xv}\downarrow$	-0.05	-0.05	-0.62	-0.05	-0.63	
d_{xz}	0.17	0.16	0.14	0.17	0.14	
$d_{xz}\downarrow$	-0.14	-0.14	-0.16	-0.14	-0.17	
d_{vz}	0.19	0.19	0.11	0.18	0.11	
$d_{yz}\downarrow$	-0.10	-0.11	-0.19	-0.11	-0.18	

 $^{\rm a}\,V1$ and V2 refer to the up-spin and down-spin vanadium sites, respectively.

antiferromagnetic states $|BS_1\rangle$ and $|BS_2\rangle$ of CdVO₃ (Table 1), in agreement with experiment [4]. Fig. 3 shows the total density of states (DOS) and the partial DOS of the V 3*d* orbitals calculated for the $|HS\rangle$ state. The corresponding DOS plots for the $|BS_1\rangle$ and $|BS_2\rangle$ states of CdVO₃ are presented in Figs. 4 and 5, respectively. Our FP-LAPW calculations reveal that approximately 0.7 spin/FU is found on each V⁴⁺ site, and the spin density of each V⁴⁺ site resides largely in the d_{xy} orbital (Table 2). These results are consistent with the finding of qualitative electronic structure calculations that the magnetic orbital of a VO₅ square pyramid containing a V⁴⁺ ion is given by the d_{xy} orbital of V that makes π -antibonding with the 2*p* orbitals of the basal oxygen atoms (Fig. 6) [12, 25].

From Eq. (3a) and the electronic energies of the states $|\text{HS}\rangle$ and $|\text{BS}_1\rangle$ (Table 1), we obtain $J_e = 24.7 \text{ meV}$. Using this J_e and the electronic energies of the states $|\text{HS}\rangle$, $|\text{BS}_1\rangle$ and $|\text{BS}_2\rangle$, we obtain $J_c = 7.7 \text{ meV}$ from both Eqs. (3b) and (3c). These values of J_e and J_c are in support of the suggestion by Onoda and Nishiguchi that J_e is ferromagnetic and dominates over J_c in strength [4]. Nevertheless, the calculated J_e value (i.e., 24.7 meV) is larger than the experimental J value (i.e., 8.6 meV) by a factor of approximately 3. However, density functional theory electronic structure calculations tend to overestimate spin exchange parameters. For example, the spin exchange parameters of $A_2\text{MnF}_5$ (A = Rb, Cs, NH₄, Li) were calculated to be greater than the experimental values by a factor of 3 to 4 [26].

Fig. 3. Plots of the total DOS (solid line) and the partial DOS of the V 3*d* orbitals (dotted line) calculated for the $|HS\rangle$ state of CdVO₃ by spin-polarized FP-LAPW calculations.

Fig. 4. Plots of the total DOS (solid line) and the partial DOS of the V 3d orbitals (dotted line) calculated for the $|BS_1\rangle$ state of CdVO₃ by spin-polarized FP-LAPW calculations. Here V1 refers to the vanadium atoms at an up-spin site.

4. Qualitative analysis of the spin exchange interactions in CdVO₃ and CaV₂O₅

In general, a spin exchange parameter J is expressed as $J = J_F + J_{AF}$, where $J_F(>0)$ and $J_{AF}(<0)$ are the ferromagnetic and antiferromagnetic terms, respectively [27,28]. When the two spin sites of a spin dimer are represented by magnetic orbitals ϕ_1 and ϕ_2 , the ferromagnetic and the antiferromagnetic terms are given by

$$J_{\rm F} = 2K_{12},\tag{4a}$$

$$J_{\rm AF} = -(\Delta e)^2 / U_{\rm eff}, \qquad (4b)$$

Fig. 5. Plots of the total DOS (solid line) and the partial DOS of the V 3d orbitals (dotted line) calculated for the $|BS_2\rangle$ state of CdVO₃ by spin-polarized FP-LAPW calculations. Here V1 refers to the vanadium atoms at an up-spin site.

Fig. 6. Magnetic orbital of a VO₅ square pyramid containing a V^{4+} ion.

where K_{12} is the exchange repulsion between the magnetic orbitals ϕ_1 and ϕ_2 , and becomes larger with increasing the overlap density distribution $\phi_1\phi_2$ [28]. U_{eff} is the effective on-site repulsion, and Δe is the energy separation of the two levels resulting from the interaction between the two magnetic orbitals. In general, J_{F} is a small positive number so that J becomes ferromagnetic (i.e., J > 0) when J_{AF} is negligibly small in magnitude.

The $(\Delta e)^2$ values for the edge- and corner-sharing spin dimers of CdVO₃ and CaV₂O₅ were calculated using the extended Hückel tight binding (EHTB) electronic structure calculations [29,30],¹ as described elsewhere [12,18,25]. Table 3 summarizes the $(\Delta e)^2$ values as well as the corresponding J_{AF} values estimated by using Eq. (4b) with $U_{eff} = 966 \text{ meV}$, which was chosen to reproduce the J'_c value of CaV₂O₅ calculated by the direct method [11]. Also listed in Table 3 are the spin exchange parameters determined for CdVO₃ and

a	bl	le	3	

Т

Values	of	$(\Delta e)^2$,	$J_{\rm AF},$	$J_{\rm calc}$	and	J_{expt}	determined	for	the	edge-	and
corner-	sha	ring sr	oin ex	chang	ge pa	ths of	CdVO ₃ and	1 Ca	V ₂ O	a 5	

		$J_{ m e}$	$J_{ m c}$	$J_{ m c}^{\prime}$
CdVO ₃	$(\Delta e)^2$	1300	21000	
	$J_{\rm AF}{}^{ m b}$	-1.3	-21.7	
	$J_{\rm calc}^{\rm c}$	24.7	7.7	
CaV ₂ O ₅	$(\Delta e)^2$	3800	19600	50600
2 0	$J_{\rm AF}{}^{\rm b}$	-3.9	-20.3	-52.4
	$J_{ m calc}{}^{ m d}$	2.4	-10.5	-52.4
	$J_{\rm expt}^{e}$	2.2	-28.6	-57.3
	$J_{\rm expt}^{\rm f}$	-3.9	-5.8	-57.7
	$J_{\rm expt}^{\rm g}$	-14.6	-50.6	-62.9

 $^{\rm a}(\Delta e)^2$ values are given in (meV)², and $J_{\rm AF},$ $J_{\rm calc}$ and $J_{\rm expt}$ values in meV.

^bCalculated by using Eq. (4b) with $U_{\rm eff} = 966 \,\mathrm{meV}$.

^cCalculated from the present FP-APW calculations.

^dCalculated by the direct method using the LDA + U functional (Ref. [11]).

^e Deduced from magnetic susceptibility measurements assuming that $J_c/J'_c = 0.2$ (Ref. [10]).

^fDeduced from magnetic susceptibility measurements assuming that $J_c/J'_c = 0.1$ (Ref. [10]).

^gDeduced from magnetic susceptibility measurements (Ref. [9]).

CaV₂O₅ from first principles electronic structure calculations (J_{calc}), and those derived for CaV₂O₅ from magnetic susceptibility measurements (J_{expt}) [9,10]. In analyzing results of magnetic susceptibility and neutron scattering measurements in terms of spin exchange parameters, the latter become numerical fitting parameters needed to reproduce the experimental results. The nature and values of these "experimental" parameters depend on what spin exchange paths one includes in the analysis and on what constraints one places on them. Thus more than one set of spin exchange parameters can lead to an equally acceptable fitting. The meaningful "experimental" spin exchange parameters for a given magnetic solid are those that are consistent with its electronic structure [12].

Table 3 shows that in CdVO₃ the J_{AF} term of the path $J_{\rm c}$ is significantly larger in magnitude than that of the path J_e . This explains why J_e of CdVO₃ is more strongly ferromagnetic than J_c of CdVO₃ in our quantitative calculations. The J_{AF} term of the path J_e is small in $CdVO_3$ and CaV_2O_5 , so that J_e should be either weakly antiferromagnetic or weakly ferromagnetic. However, the $J_{\rm AF}$ term of the path $J_{\rm e}$ is considerably smaller in CdVO₃ than in CaV₂O₅, so that the path J_e is likely to be more strongly ferromagnetic in CdVO₃. Furthermore, the ferromagnetic terms $J_{\rm F}$ of the paths $J_{\rm e}$ and $J_{\rm c}$ should be greater in CdVO₃ than in CaV₂O₅ for the following reasons: First, J_e is more strongly ferromagnetic in CdVO₃ than in CaV₂O₅. This suggests that $CdVO_3$ has a larger J_F contribution in addition to a negligible J_{AF} . Second, the J_{AF} values of the path J_c are similar in CdVO₃ and CaV₂O₅. Nevertheless, J_c is

¹Our calculations were carried out by employing the SAMOA (Structure and Molecular Orbital Analyzer) program package.

weakly ferromagnetic in CdVO₃, but substantially antiferromagnetic in CaV₂O₅. This implies a greater J_F contribution to the J_c path in CdVO₃.

5. Geometrical features of spin exchange paths in $CdVO_3$ and CaV_2O_5

To see if CdVO₃ possesses any structural feature that enhances the $J_{\rm F}$ term for the exchange paths $J_{\rm c}$ and $J_{\rm e}$, we compare the local geometries of the V^{4+} ions in CdVO₃ and CaV₂O₅. The interatomic distances and bond angles specifying the local structures are defined in Fig. 7 and their values are listed in Table 4. In terms of the V \cdots V and V–O bond lengths as well as the V–O–V and O-V-O bond angles, the local structures of the V^{4+} ions are very similar in CdVO₃ and CaV₂O₅. A substantial difference between the local structures of CdVO₃ and CaV₂O₅ lies in the height Δh of the V⁴⁺ ion above the basal plane in each VO₅ square pyramid. As can be seen from Fig. 1b, the two V^{4+} ions of each J_e path are located symmetrically on the opposite sides of the "condensed basal plane". Thus the Δh value of each V^{4+} ion can be approximated by $\Delta z/2$, where Δz is the height difference between the two V^{4+} ions. As listed in Table 4, the Δh value is considerably smaller for CdVO₃ than for CaV₂O₅. Our analysis of the crystal structures of other magnetic solids of V⁴⁺ ions made up of VO₅ square pyramids (e.g., MgV₂O₅ [8], CaV₄O₉ [31], SrV_4O_9 [16], CdV_3O_7 [32] and CaV_3O_7 [32]) shows that the Δh value is smallest for CdVO₃. The strength of the π -interaction between the V $3d_{xy}$ and the basal oxygen 2p orbitals (Fig. 6) is enhanced with decreasing the Δh value toward zero. An enhancement of the π -interaction should induce a stronger ferromagnetic term $J_{\rm F}$ because

Fig. 7. Geometrical parameters defining the local structures around the V^{4+} ions associated with the J_e paths in CdVO₃ and CaV₂O₅.

Table 4 Geometrical parameters associated with the J_e paths of CdVO₃ and CaV₂O₅

	CdVO ₃ ^a	CaV ₂ O ₅ ^b
V…V (Å)	3.048	3.026
r_1 (Å)	1.940	1.949
r_2 (Å)	1.992	1.982
θ_1 (°)	78.4	79.4
θ_2 (°)	101.6	100.7
Δh (Å)	0.430	0.536

^a Ref. [4].

^b Ref. [7].

it will increase the overlap density distribution between two magnetic orbitals.

6. Concluding remarks

Using first principles spin-polarized FP-LAPW calculations, we estimated the strengths of the spin exchange interactions J_e and J_c in CdVO₃. These calculations show that both J_e and J_c are ferromagnetic, but J_e dominates over J_c . Our spin dimer analysis based on EHTB electronic structure calculations suggests that in terms of J_{AF} the path J_e is expected to be more strongly ferromagnetic in CdVO₃ than in CaV₂O₅, and the ferromagnetic terms J_F of the paths J_e and J_c should be greater in CdVO₃ than in CaV₂O₅. In each VO₅ square pyramid, the height of the V⁴⁺ ion above the basal plane is considerably lower in CdVO₃ than in CaV₂O₅. This geometrical factor is expected to enhance the J_F term contributions to the spin exchange paths in CdVO₃.

Acknowledgments

Work at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under Grant DE-FG02-86ER45259. The authors are grateful to North Carolina Supercomputer Center for the generous computer time.

References

- [1] J. Galy, J.-C. Bouloux, C. R. Acad. Sci. 264 (1967) 388.
- [2] B. Reuter, K. Müller, Z. Anorg. Allg. Chem. 368 (1969) 174.
- [3] B.L. Chamberland, P.S. Danielson, J. Solid State Chem. 10 (1974) 249.
- [4] M. Onoda, N. Nishiguchi, J. Phys.: Condens. Matter 11 (1999) 749.
- [5] M.E. Fischer, Am. J. Phys. 32 (1964) 343.

- [6] J.B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York, 1963 (Chapter 3).
- [7] M. Onoda, N. Nishiguchi, J. Solid State Chem. 127 (1996) 359.
- [8] M. Onoda, A. Ohyama, J. Phys.: Condens. Matter 10 (1998) 1229.
 [9] Y. Ueda, Chem. Mater. 10 (1998) 2653.
- [10] S. Miyahara, M. Troyer, D.C. Johnston, K. Ueda, J. Phys. Soc. Jpn. 67 (1998) 3918.
- [11] M.A. Korotin, V.I. Anisimov, T. Saha-Dasgupta, I. Dasgupta, J. Phys.: Condens. Matter 12 (2000) 113.
- [12] M.-H. Whangbo, H.-J. Koo, D. Dai, J. Solid State Chem., in press.
- [13] G. Liu, J.E. Greedan, J. Solid State Chem. 115 (1995) 174.
- [14] K. Kodama, H. Harashina, H. Sasaki, Y. Kobayashi, M. Kasai, S. Taniguchi, Y. Yasui, M. Sato, K. Kakurai, T. Mori, M. Nishi, J. Phys. Soc. Jpn. 66 (1997) 793.
- [15] Y. Fukumoto, A. Oguchi, J. Phys. Soc. Jpn. 67 (1998) 2205.
- [16] Y. Oka, T. Yao, N. Yamamoto, M. Ueda, S. Maegawa, J. Solid State Chem. 149 (2000) 414.
- [17] Y. Zhang, C.J. Warren, R.C. Haushalter, A. Clearfield, D.-K. Seo, M.-H. Whangbo, Chem. Mater. 10 (1998) 1059.
- [18] H.-J. Koo, M.-H. Whangbo, J. Solid State Chem. 153 (2000) 263.
- [19] For a recent review, see: F. Illas, I. de P. R. Moreira, C. de Graaf, V. Barone, Theor. Chem. Acc. 104 (2000) 265.

- [20] D. Dai, M.-H. Whangbo, J. Chem. Phys. 118 (2003) 29.
- [21] A. Chartier, P. D'Arco, R. Dovesi, V.R. Saunders, Phys. Rev. B 60 (1999) 14042 and the references cited therein.
- [22] A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52 (1995) R5467.
- [23] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001. ISBN 3-9501031-1-2. See also: http://www.wien2k.at/
- [24] J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [25] H.-J. Koo, M.-H. Whangbo, Inorg. Chem. 39 (2000) 3599.
- [26] D. Dai, M.-H. Whangbo, J. Chem. Phys. 114 (2001) 2887.
- [27] P.J. Hay, J.C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 97 (1975) 4884.
- [28] O. Kahn, Molecular Magnetism, VCH Publishers, Weinheim, 1993.
- [29] R. Hoffmann, J. Chem. Phys. 39 (1963) 1397.
- [30] D. Dai, J. Ren, W. Liang, M.-H. Whangbo, http://chvamw. chem.ncsu.edu.
- [31] J.C. Bouloux, J. Galy, Acta Crystallogr. B 29 (1973) 1335.
- [32] N. Nishiguchi, M. Onoda, K. Kubo, J. Phys.: Condens. Matter 14 (2002) 5731.